[1] 鍒樻槍鏄�, 闄堝織鎭�. 涓浗姘磋祫婧愮幇鐘惰瘎浠峰拰渚涢渶鍙戝睍瓒嬪娍鍒嗘瀽. 鍖椾含: 涓浗姘村埄姘寸數鍑虹増绀�, 2001.
[2] 寮犲缓浜�, 鐜嬪浗搴�,绛�. 姘斿�欏彉鍖栧姘存枃姘磋祫婧愬奖鍝嶇爺绌�. 鍖椾含: 绉戞妧鍑虹増绀�,2007. 68~70.
[3] 寮犲厜杈�. 鍏ㄧ悆姘斿�欏彉鍖栧榛勬渤娴佸煙澶╃劧寰勬祦閲忓奖鍝嶇殑鎯呮櫙鍒嗘瀽. 鍦扮悊鐮旂┒,2006, 25(2): 268~275.
[4] 鍐夊湥瀹�, 鏉庣褰�, 鍚曟槍娌�. 楸煎瓙婧祦鍩熸按鏂囪繃绋嬪奖鍝嶅洜绱犵殑鐗瑰緛鏃堕棿灏哄害鍒嗘瀽. 鍦扮悊鐮旂┒,2007, 26(2): 337~345.
[5] Neitsch, S L, Arnold, J G, Kiniry, J R, et al. Soil and water assessment tool user's manual. Temple: Grassland, Soil and Water Research Laboratory, Agricultural Research Service, 2002. 1~3.
[6] Neitsch S L, Arnold J G, Kiniry J R, et al. Soil and water assessment tool theoretical documentation: Version 2005. http://www.brc.tamus.edu/swat/
[7] Eckhardt K, Haverkamp S, Fohrer, N, et al. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, 2002, 27 (9-10):641~644.
[8] Jayakrishnan R, Srinivasan R, Santhi C, et al. Advances in the application of the SWAT model for water resources management. Hydrological Processes, 2005, 19 (3):749 ~ 762.
[9] Arnold J G, Williams J R, Srinivasan R, et al. Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association. 1998, 34(1):73~89.
[10] Santhi C, Arnold J G, Williams J R, et al. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association, 2001, 37(5):1169~1188.
[11] Chanasyk D S, Mapfumo E, Willms W. Quantification and simulation of surface runoff from fescue grassland watersheds. Agricutural Water Management, 2003, 59:137~153.
[12] Tripathi, M P, Panda , R K, Raghuwanshi, N S. Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT Model. Biosystems Engineering, 2003, 85 (3): 365~379.
[13] F Bouraoui, S Benabadallah, A Jrad, et al. Application of the SWAT model on the Medjerda river basin (Tunisia). Physics and Chemistry of Earth,2005, 30:497~507.
[14] 搴為潠楣�, 寰愬畻瀛�, 鍒樻槍鏄�. SWAT妯″瀷鐮旂┒搴旂敤杩涘睍. 姘村湡淇濇寔鐮旂┒, 2007, 14(3): 31~35.
[15] 榛勬竻鍗�, 寮犱竾鏄�. SWAT鍒嗗竷寮忔按鏂囨ā鍨嬪湪榛戞渤骞叉祦灞卞尯娴佸煙鐨勬敼杩涘強搴旂敤. 鍗椾含鏋椾笟澶у瀛︽姤,2004,28(2).22~26.
[16] 鐜嬩腑鏍�, 鍒樻槍鏄�,榛勫弸娉�.SWAT妯″瀷鐨勫師鐞嗐�佺粨鏋勫強搴旂敤鐮旂┒.鍦扮悊绉戝杩涘睍, 2003,22(1):79~86.
[17] 鍒樻槍鏄�,鏉庨亾宄�,鐢拌嫳.鍩轰簬DEM鐨勫垎甯冨紡姘存枃妯″瀷鍦ㄥぇ灏哄害娴佸煙搴旂敤鐮旂┒.鍦扮悊绉戝杩涘睍,2003,22(5):437~445.
[18] Zhao F F, Xu Z X, Huang J X.Impact of climate change on the streamflow in headwater of the Yellow River basin. In: Liu Zhiyu, Yang Dawen. Proceedings of the International Symposium on Flood Forecasting and Water Resources Assessment for IAHS-PUB. Beijing: China WaterPower Press, 2006.471~481.
[19] 寮犱笢, 寮犱竾鏄�, 鏈卞埄,绛�. SWAT鍒嗗竷寮忔祦鍩熸按鏂囩墿鐞嗘ā鍨嬬殑鏀硅繘鍙婂簲鐢ㄧ爺绌�. 鍦扮悊绉戝,2005, 25(4):434~440.
[20] 鏈辨柊鍐�, 鐜嬩腑鏍�, 鏉庡缓鏂�, 浜庣, 鐜嬮噾璐�. SWAT妯″瀷鍦ㄦ汲鍗渤娴佸煙搴旂敤鐮旂┒. 鍦扮悊绉戝杩涘睍, 2006, 25(5): 105~111.
[21] 閮濊姵鍗�, 瀛欏嘲, 寮犲缓姘�.瀹樺巺姘村簱娴佸煙闈炵偣婧愭薄鏌撶爺绌惰繘灞�.鍦板鍓嶇紭,2002,9(2):385~386.
[22] Hao F H, Zhang X S, Yang Z F. A distributed non-point source pollution model: Calibration and validation in the Yellow River Basin. Journal of Environmental Sciences, 2004,16(4):646~650.
[23] 搴為潠楣�. 闈炵偣婧愭薄鏌撳垎甯冨紡妯℃嫙——浠ュ瘑浜戞按搴撴按婧愬湴淇濇姢涓轰緥. 鍖椾含:鍖椾含甯堣寖澶у姘寸瀛︾爺绌堕櫌,2007.
[24] 闄堝啗閿�,鏉庣褰�,寮犳槑.妯″瀷妯℃嫙姊(娌虫祦鍩熸皵鍊欐尝鍔ㄥ拰鍦熷湴瑕嗚鍙樺寲瀵规祦鍩熸按鏂囩殑褰卞搷.涓浗绉戝D杈�, 2004,34(7):668~674.
[25] 鍒樺悏宄�,闇嶄笘闈�,鏉庝笘鏉�,绛�.SWAT妯″瀷鍦ㄩ潚娴锋箹甯冨搱娌虫祦鍩熷緞娴佸彉鍖栨垚鍥犲垎鏋愪腑鐨勫簲鐢�.娌虫捣澶у瀛︽姤(鑷劧绉戝鐗�),2007,35(2): 159~163.
[26] 鏉ㄨ蕉鏂�, 鏉ㄩ潚鎯�. 绐熼噹娌虫祦鍩熸按鏂囩壒鎬у垎鏋�. 姘磋祫婧愪笌姘村伐绋嬪鎶�,2006,17(1):56~60.
[27] 閮濊姵鍗�,绛�. 闈炵偣婧愭薄鏌撴ā鍨�:鐞嗚鏂规硶涓庡簲鐢�. 鍖椾含: 涓浗鐜绉戝鍑虹増绀�,2006.67.
[28] 榄忔枃绉�, 璋㈡窇鐞�. 閬ユ劅璧勬枡鍦⊿CS妯″瀷浜ф祦璁$畻涓殑搴旂敤. 鐜閬ユ劅,1992,7(4): 243~250.
[29] 寮犵鑻�, 瀛熼, 涓佸畞. SCS妯″瀷鍦ㄥ共鏃卞崐骞叉棻鍖哄皬娴佸煙寰勬祦浼扮畻涓殑搴旂敤. 姘村湡淇濇寔鐮旂┒, 2003, 10(4): 171~173.
[30] 鍒樿搐璧�, 搴风粛蹇�, 鍒樺痉鏋�,绛�. 鍩轰簬鍦扮悊淇℃伅鐨凷CS妯″瀷鍙婂叾鍦ㄩ粍鍦熼珮鍘熷皬娴佸煙闄嶉洦-寰勬祦鍏崇郴涓殑搴旂敤. 鍐滀笟宸ョ▼瀛︽姤, 2005, 21(5): 93~97.
|